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Abstract

In this study, we examine the sensitivity of portfolio efficiency to the choice of test assets and
factor portfolios and discuss its implications for portfolio performance evaluation. We confirm
that the efficiency tests are very sensitive to the choice of test assets, but relatively robust to the
specification of factor portfolios. Notably, both the original Fama-French factors and their
component three factors consistently identify the same test portfolios which show significant
abnormal returns (i.e., non-zero alphas). Additionally, our results indicate that portfolio efficiency
varies over time and declines during periods of financial crises. These findings underscore the
importance of aligning performance benchmarks with both the structural characteristics of mutual
funds and prevailing market conditions.
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The Sensitivity of Multifactor Efficiency and Performance Evaluation

1. Introduction

A central tenet of modern portfolio theory is that asset returns are linearly related to their

risk exposures when the market portfolio is mean-variance efficient. In multifactor models, this

implies a linear relationship between asset (or portfolio) returns and multiple factor loadings, as

Thus, a key

requirement for using such models in performance evaluation is portfolio efficiency i.e.,

whether factor portfolios span the efficient frontier. This requirement underlies many applications

in mutual fund performance analysis, yet its validity remains empirically contentious.1

This paper examines the sensitivity of portfolio efficiency to the choice of test assets and

factor portfolio construction, and consequently, the validity of using standard factor models

such as the Fama-French (FF) three-factor model as performance benchmarks.2 These questions

are essential for mutual fund evaluation, where estimated intercepts from factor regressions (alphas)

are widely interpreted as measures of abnormal performance. However, if factor models are

1 Fama (1996) also shows the relation between multifactor portfolio efficiency and the ICAPM.

The three factors are the market risk premium (MKT), size premium (SMB: small portfolio returns
minus big portfolio returns), and value premium (HML: high B/M portfolio returns minus low B/M
portfolio returns). Fama and French (1993) argue that HML and SMB seem to explain the test assets
returns very well because those two factors probably capture the important state variables, thus playing as
good hedging portfolios. In fact, Liew and Vassalou (2000) contend that Fama-French two factors such as
HML and SMB are good proxies for future economic growth productivity. This is consistent with the
assumption that HML and SMB may serve as good proxies for underlying state variables. We also
examine five-factor model and find almost the same results. We discuss more details in a subsequent
section.



inefficient or mis-specified, positive (or negative) alphas may simply reflect pricing biases rather

than true managerial skill.

Our empirical framework builds on the multivariate F-test developed by Gibbons, Ross,

and Shanken (GRS, 1989). A high GRS statistic implies that the null hypothesis of portfolio

efficiency is rejected, indicating that the benchmark model fails to span the efficient frontier.3

Using this methodology, we test the efficiency of the FF three-factor model and compare it against

several alternative specifications based on its underlying component portfolios such as small

(S) and big (B) size-sorted portfolios and high (H) and low (L) book-to-market portfolios. Based

on the tests with these component factor portfolios, we can re-examine the validity of SMB and

HML as true risk factors (The literature section will discuss the potential pricing biases arising

from the misspecification of SMB and HML in detail).4

We employ three sets of test assets: (1) the FF 25 size value sorted portfolios, (2) cash-to-

price (C/P) decile portfolios, and (3) FF 30 industry portfolios. This variety allows us to assess

whether portfolio efficiency test results are driven by similarities between test assets and the

factors, especially when both are constructed using firm characteristics. Additionally, we segment

our data (1986 2022) into 5-year rolling windows to capture potential time variation in portfolio

efficiency, particularly around major crises such as the Dot-com bubble, Global Financial Crisis,

and the COVID-19 pandemic.

3 The GRS statistic can be interpreted as the difference between the Sharpe ratio of a benchmark factor
model with that of an expanded portfolio including the test assets (see also Jobson and Korkie, 1989;
Huberman and Kandel, 1987).

4 Refer to Ferson and Harvey (1999), Berk (2000), and Pukthuanthong et al. (2019) for a discussion of the
potential issues in testing asset pricing when characteristics-sorted (size or value) test portfolios are used
with the risk factors constructed using the same set of test portfolios.



In sum, this paper extends the foundational work of Fama and French (1993, 1996) by

addressing several underexplored issues in portfolio efficiency testing and mutual fund

performance evaluation. First, we show that the outcomes of GRS efficiency tests are highly

sensitive to the choice of test assets, particularly when the portfolios are not constructed using the

same firm characteristics that define the factors themselves. Cremers et al. (2012) show that the

FF three-factor model yields significantly positive alphas for passive and big portfolios like the

S&P 500, largely due to construction issues in the SMB factor. This misalignment can lead to

spurious inferences about performance. Second, we build on this argument by examining whether

component-based can reduce such distortions. Specifically, our results suggest that component

factors, used in place of traditional constructs like SMB and HML, offer comparable explanatory

power while potentially mitigating measurement biases. Notably, these alternative factors also help

identify specific test portfolios with significant abnormal returns, which in turn contribute to

overall portfolio inefficiency. For example, we find significant alphas in the same test portfolios

when we use component factors such as M, S, and H in place of SMB and HML as factors. This

observation suggests that the source of pricing bias may not be solely due to the construction of

SMB, as argued by Cremers et al. (2012), but could stem from other misspecifications.

Third, we document substantial time variation in portfolio efficiency, showing that

standard factor models tend to break down during major market disruptions including the 1998

Asian crisis and Dot-com crash, the 2008 financial crisis, and the COVID-19 pandemic.

Specifically, GRS efficiency statistics spike during these episodes, leading to strong rejection of

portfolio efficiency. This pattern is consistent with the notion that HML and SMB (or their

component factors) may proxy for underlying state variables. For example, Liew and Vassalou



(2000) find that HML and SMB are predictive of future economic growth, while Harvey and Liu

(2021) provide further support for the FF three-factor model using individual stocks as test assets.

Moreover, the literature shows that financial crises are characterized by heightened

contagion and co-movements across sectors and firms, thus reducing the benefits of portfolio

diversification. These dynamics can distort investor expectations and confound perceptions of risk

and return, leading to portfolio inefficiency during such periods. Finally, we demonstrate that

model misspecification can generate spurious alpha estimates, reenforcing the role of aligning

benchmarks with both portfolio characteristics and prevailing market conditions. Collectively,

these findings advance our understanding of when and how factor models serve as reliable tools

for evaluating mutual fund performance an issue that remains only partially addressed in the

original Fama-French framework.

Section 2 introduces the GRS tests of portfolio efficiency using alternative test assets. We

also examine the relation between the GRS statistic which is a function of abnormal returns

(regression alphas) and portfolio efficiency. It also presents a literature review of portfolio

efficiency and performance measures. Section 3 outlines the data and methodology used in our

analyses, while Section 4 presents and discusses the empirical results. We discuss the implications

of our findings for mutual fund performance evaluation in Section 5. Section 6 summarizes and

concludes the paper.

2. Literature Review and GRS tests of Portfolio Efficiency

We follow the methodology of Gibbons, Ross, and Shanken (GRS, 1989) who develop a

test of mean-variance efficiency for a given portfolio, using a multivariate F-test based on small-

sample distributions. This approach offers several advantages. First, the GRS F-test is robust to



departures from the normality assumption in asset returns (MacKinlay, 1985). Second, as shown

in Gibbons and Shanken (1987), GRS statistics retain strong test power when efficiency is

evaluated across subperiods, making it more appropriate than simply aggregating data over the

entire sample. Third, the F-test statistic can be interpreted in terms of Sharpe ratios specifically,

the difference between the Sharpe ratios of the test assets and the combined portfolio of test and

factor assets - which provides additional insight into the sources of portfolio inefficiency.

The GRS F-test is based on the following regression:

Rit - Rft = ai + bi(Rmt Rft) + siSMBit + hiHMLit + eit. i = 1, . . . . . , N (1)

This regression model states that, on average, excess returns on test assets can be explained by the

risk premiums such as (Rm Rf), SMB, and HML, and their sensitivities (loadings) to the three

factors. If this three-factor model is correct, then we should expect the regression intercept estimate

to be close to zero for all test assets. The GRS test evaluates whether the intercept estimates from

time-series regressions of portfolio returns on factor models are jointly equal to zero. If the

intercepts are statistically close to zero, it suggests that the factor model efficiently explains the

returns of the test assets. As GRS (1989) demonstrate, a small value of the GRS statistic indicates

that we cannot reject the null hypothesis of mean-variance efficiency for the given factor model

in our case, the FF three-factor model. Specifically, the GRS statistic is a function of the intercept

estimates and the residual covariance matrix obtained from regressing each of the N test assets

against the factor portfolios. In summary, the GRS F-test statistics is:

, . . . . . . . . . . . . . . . (2)

where is a vector of the intercept estimate from regression equation (1); is the sample mean of

test asset returns; is the sample estimate of variance-covariance matrix of the residuals, and is



the sample variance/covariance matrix of N-vector of test asset returns, in vector format. T, N, and

L are the number of observations, the number of test assets, and the number of factor portfolios,

respectively. This framework is widely adopted in asset pricing and performance evaluation due

to its intuitive connection to the Sharpe ratio and its interpretability in mean-variance terms.

GRS efficiency statistics (equation 2) can be expressed in the context of Sharpe ratios as

below:

, . . . . . . . . . . . . . . . . (3)

is the maximum sharpe ratio on the efficient frontier constructed with L factor portfolios, while

is the maximum sharpe ratio of the efficient frontier with N test assets and L factor portfolios.

The statistic above, W, can also be expressed as the portfolio efficiency ratio, which is the Sharpe

ratio of all assets including tests assets and factor portfolios divided by the Sharpe ratio of the

tangent portfolio on the efficient frontier generated by factor portfolios. Thus, W and F will be

zero, accepting the null hypothesis when the two Sharpe ratios are the same. In this case, the factor

portfolios are said to span all assets, including test assets as well as the factor portfolios.

A popular way to measure the abnormal performance of mutual funds is to estimate their

intercepts of the regression based on a factor model like equation (1). A problem with this approach

for performance evaluation is that significant positive (or negative) intercepts can be obtained

simply due to pricing bias, without any true abnormal performance from mutual funds. A notable

concern in performance evaluation arises when non-managed portfolios, such as the S&P 500

index, yield statistically significant alphas under standard factor models. Cremers et al. (2012)

demonstrate that the S&P500 index exhibits statistically significant abnormal performance when



evaluated using the Fama-French three- or four-factor model (Fama and French, 1993; 1996).

Cremers et al. (2012) argue that such findings undermine the validity of these factor models as

appropriate benchmarks for portfolio evaluation. They attribute the pricing bias for the large test

portfolio to the misspecification of SMB a long-short portfolio.

To address this, we investigate alternative factor constructions. Fama and French (1996,

2015) note that their factors (SMB and HML) are essentially linear combinations of underlying

component portfolios such as H, L, S, and B each of which may also serve as multifactor

minimum variance (MMV) portfolios a point we elaborate on later. We replicate and extend their

framework by comparing the performance of alternate component-based factor models with the

traditional FF three-factor model across various test asset groups. We acknowledge the limitations

of the GRS test, which relies on constant parameters and uses unconditional moments

assumptions that may not hold in the presence of time-varying risk premia and covariances. Prior

studies such as Ferson, Kandel and Stambaugh (1987) and Ferson and Harvey (1999) have

proposed conditional approaches to address these issues. While we do not pursue a fully

conditional model, we adopt a rolling 5-year estimation window to partially account for changing

market dynamics.

2.1. Sensitivity to the Choice of Test Assets

Fama and French (1993, 1996, 1997) evaluate portfolio efficiency using a variety of test

portfolios, including the 25 size-value sorted portfolios, 48 industry portfolios and decile portfolios

sorted on C/P, E/P, or B/M.5 Based on the 1963 - 1991 sample, FF (1993) find that, out of the 25

B/M, E/P, and C/P represent book-to-market, earnings/price, and cash flow/price, respectively.



portfolios, only three exhibit statistically significant alphas.6 For instance, portfolio P (1,1) has an

alpha of -0.34 (t = -3.16), while P(5,1) - the largest test portfolio in the sample - has a significantly

positive alpha of 0.21 (t=3.27) as shown inModel (iv) of Table 9a. This result aligns with Cremers,

et al. (2012), who argue that portfolio such as the SP&500 can exhibit positive alpha due to mis-

specified factor construction.

In contrast, when using decile portfolios sorted by E/P or C/P, FF (1996) show that none of the

intercepts are statistically significant, and the GRS test fails to reject the null hypothesis, implying

that the three-factor model adequately explains these portfolio returns. Further, FF (1997) examine

the efficiency of their three-factor model, using 48 industry test portfolios and find that seven

portfolios exhibit significant intercepts, indicating that portfolio efficiency depends on the choice

of test portfolios.

To investigate whether this sensitivity persists in more recent data, we replicate and extend

these analyses using updated samples. Our study examines whether the rejection of portfolio

efficiency under the FF three-factor model continues to depend on the choice of test assets and

factor construction. This line of inquiry contributes to ongoing debates over whether the apparent

success of FF factor models is partially driven by the alignment between factor construction and

test asset formation both of which are often based on similar firm characteristics (e.g., size,

value).

2.2. Multifactor-Minimum-Variance (MMV) portfolios

6 They report similar results on the alpha estimates in FF (1996), except that four test portfolios produce
significant abnormal intercepts including the same portfolios for slightly different sample period of 1963
through 1993. For example, P (1,1) has an alpha estimate of -0.45 (t = -4.19), while P (5,1) has an
intercept estimate of 0.20 (t=3.14).



Fama and French (1996) argue that their three factors (MKT, SMB, and HML) are close to

multifactor minimum variance (MMV) portfolios and that their component portfolios M, H, L,

S, B can serve as viable substitutes. Building on this insight, we propose using these MMV

component portfolios to evaluate the FF 25 portfolios. This approach may help mitigate potential

pricing biases arising from misspecifications in the construction of SMB and HML, thereby

offering a more robust assessment of portfolio efficiency.

Concerns about the validity and interpretations of FF factors have been widely discussed

in the literature. For example, Berk (1995) notes that ratios such as the book-to-market central

to HML may spuriously explain cross-sectional returns due to their mechanical relation with

price. Daniel and Titman (1997) argue that the success of the FF model may stem from firm

characteristics embedded in both the factors and test assets, rather than from priced risk. Similarly,

Lewellen, Nagel, and Shanken (2010) and Wallmeier and Tauscher (2012) highlight that using test

portfolios sorted on size and B/M, while constructing factors from the same criteria, may create

artificial model validation due to overlapping construction mechanism. Similarly, Ferson,

Sarkissian, and Simin (2003) challenge the validity of SMB and HML as true risk factors. Ferson

and Harvey (1999) further show that macroeconomic variables reflecting time-varying expected

returns can explain the cross-section of stock returns well. In contrast, Liew and Vassalou (2000)

present evidence that both HML and SMB are associated with future GDP growth, suggesting their

relevance as proxies for systematic risk. More recently, Fama and French (2015; 2018) expand

their framework to a five-factor model by including profitability and investment factors, which

-factor specification.

2.3. Time-Varying Portfolio Efficiency and Market Crises



Portfolio efficiency is not static. We find that GRS statistics spike during crisis periods such as

2000, 2008, and 2020 indicating breakdowns in factor model efficiency. These periods are

characterized by heightened market volatility driven by macroeconomic uncertainty, policy

interventions, and shifting investor sentiment. During financial crises, volatility tends to spike, and

correlations among asset classes often increase as investors simultaneously shift their exposure to

riskier assets. This dynamic has been documented in the literature (e.g., Liew and Vassalou, 2000;

Longin and Solnik, 2001). These dynamics can cause dramatic shifts in the shape and position of

the efficient frontier, rendering previously efficient portfolios inefficient. Muir (2017) further

highlights that risk premia such as expected returns or dividend yields relative to price

typically rise during crisis periods, altering the underlying risk-return tradeoff.

Further, traditional diversification strategies become less effective as asset correlations rise

and return distributions become more skewed (Aloui, Aïssa, and Nguyen, 2011; Beine, Cosma,

and Vermeulen, 2010). In response, alternative investment strategies have been proposed to

enhance portfolio efficiency during turbulent periods. For instance, incorporating additional

individual stocks or alternative assets such as commodities or non-U.S. equities into traditional

equity portfolios or Fama-French factor portfolios can help mitigate contagion effects and restore

diversification benefits (Akhtaruzzaman, Boubaker, and Sensoy, 2021; Ao, Yingying, and Zheng,

2019; Tronzano, 2022; Wen, Wei, and Huang, 2012).

To investigate whether standard factor models remain robust across varying market

regimes, we include these crisis periods in our analysis. This allows us to explore how portfolio

efficiency evolves under extreme market stress and whether the Fama-French three-factor model

retains its explanatory power. We recognize the limitations of the F-test of portfolio efficiency as

used in this paper, particularly its reliance on the assumption of stable parameters and constant



factor loadings over time. As Lettau and Ludvigson (2001) emphasize, risk-premia can vary

significantly with changing economic conditions, making traditional efficiency tests potentially

unreliable. To mitigate this issue, we adopt a rolling five-year window approach to estimate

portfolio efficiency. This method allows the model to dynamically adjust to evolving market

conditions, thereby reducing the influence of structural breaks and improving the robustness of our

results.7

The rolling window technique is widely supported in the literature as a means to address

parameter instability and time variation in expected returns and covariances. Pesaran and

Timmermann (1995) examine forecast performance under changing environments; Ang and

Bekaert (2002) explore regime shifts in international equity markets; and Ferson and Harvey (1999)

model conditional asset pricing using time-varying instruments. By applying this approach, we

aim to provide more reliable and time-sensitive assessments of the efficiency of the Fama-French

factor models, particularly during periods of systemic financial stress.8

3. Data and Methodology

We obtain the Fama-French three-

library to evaluate the portfolio efficiency of the three-factor model over the period from 1986 to

7 Further, Harvey and Liu (2021) argue that the use of portfolios, rather than individual stocks, helps
alleviate concerns about the assumption of constant factor loadings, as portfolios tend to exhibit more
stable exposures over time.

8 Pesaran and Timmermann (1995) discuss the benefits of using rolling window analysis in predicting
stock returns, emphasizing its ability to adapt to changing market conditions and improve model
robustness. Ferson and Harvey (1999) highlight the role of conditioning variables in asset pricing models,
advocating for methods that account for time-varying risk factors and suggesting rolling window analysis
as a practical approach. Ang and Bekaert (2002) explore the impact of regime shifts on international asset
allocation and demonstrate the effectiveness of rolling window techniques in capturing time-varying
correlations and factor loadings.



2022. As test assets, we employ three distinct sets: (1) the 25 Fama-French size and value-sorted

portfolios, (2) 10 FF portfolios sorted by cash flow-to-price (C/P) ratios, and (3) 30 FF industry

portfolios. The GRS test, which we use to assess portfolio efficiency, is highly sensitive to the

number of time-series observations (T). By construction, the GRS statistics tend to increase with

T, potentially overstating inefficiency in longer samples. Gibbons, Ross, and Shanken (1989)

themselves caution against this issue, recommending a sample of approximately 60 monthly

observations for reliable inference for 20 to 30 test assets.

Accordingly, we compare the results of the GRS test over the full 444-month sample

mirroring the approach in Fama and French (1996) with those obtained from 5-year subperiods

(i.e., 60-month windows). This allows us to evaluate whether the efficiency of the three-factor

model remains stable across different time horizons and economic conditions. Further, this

approach, as discussed above, allows the factor premia (and portfolio efficiency) to be time-

varying. In addition to the standard FF factors, we further explore the portfolio efficiency of the

three-factor model by replacing SMB and HML with their component portfolios specifically, M

(market), S (small), B (big), H (high book-to-market), and L (low book-to-market). One advantage

of using these component portfolios is that this approach imposes fewer constraints on the factor

loadings. Specifically, it allows the model to estimate separate sensitivities to each component

factor portfolio, providing greater flexibility in capturing the return dynamics of the test assets.

Consider the following three-factor regression:

Rit - Rft = ai + bi(Rmt Rft ) + cai(Comait Rft) + cbi(Combit - Rft) + eit. i = 1, . . . , N, (2)

where Coma and Comb represent any two component factors from the set of three components

H, S, and L. The big portfolio factor (B) is omitted from the regression equation due to its high



correlation with the market factor. In Equation (2), both the high book-to-market (H) and low

book-to-market (L) portfolios have independent factor loadings, hi and li , respectively. In addition

9 the traditional

Fama-French three-

sensitivities to H and L are equal in magnitude but opposite in sign, with the HML loading

represented as (i.e., hHML = hH hL). This constraint may oversimplify the true structure of

returns. By estimating hi and li, separately, Equation (2) allows for more accurate and flexible

modeling of test asset exposures, which can lead to better explanatory power.

To further assess the robustness of these models, we extend our sample period to include

the most recent market environments, covering the full span from 1980 to 2022. This expanded

horizon captures several major financial crises and structural shifts. We estimate portfolio

efficiency using the GRS test within rolling 5-year windows throughout the sample period, thereby

accounting for time variation in market conditions and model performance.

4. Empirical Results

4.1. Choice of Test Assets and Portfolio Efficiency

Table 1 shows the regression estimates for each of the 25 FF size and value-sorted

portfolios over the period 1986 to 2022, using the Market risk premium, SMB and HML

explanatory variables. Where appropriate, we compare our results with those of Fama and French

(1996) to highlight differences in factor loadings and interpret the results in light of more recent

data. Overall, the three-factor model explains average returns well for most portfolios, with the

9 According to Cremers et al. (2012), a large-cap portfolio such as the S&P500 tends to be highly
correlated with the BIG portfolio, which leads to a significantly negative loading on SMB. Coupled with
a positive average SMB premium, this results in an artificially high alpha for the S&P500 a misleading
indicator of performance.



exception of six portfolios - P(1,1), P(2,1), P(1,4), P(1,5), P(5,1) and P(5,4) - which exhibit

significant intercepts of -0.62, -0.17, 0.23, 0.25, 0.17, and -0.27, respectively.10 Interestingly, the

estimated market betas are close to 1.0 across all 25 portfolios, regardless of firm size or book-to-

market characteristics. This result reflects the ability of the SMB and HML factors to absorb

variation in market exposure attributable to size and value effects. The SMB factor loadings show

systematically different patterns across portfolio size: at each book-to-market level, the loading

decreases as portfolio size increases. Specifically, the smallest portfolios exhibit SMB beta greater

than one, ranging from 1.38 to 1.04, while the biggest portfolios show even negative factor

loadings, ranging from -0.26 to -0.19. This pattern is quite consistent with the original findings of

FF (1993), based on their 1963 1991 sample. Given the strong factor loadings of SMB and HML,

with very large t-values, it is not surprising to observe large R2 values.

We extend our analysis by examining alternative sets of test portfolios, including the 30

industry portfolios and 10 C/P decile portfolios, as shown in Table 2. It is noteworthy that six out

of the 30 industry portfolios show significant intercept estimates, implying that the FF three-factor

model explains the average returns of most industry portfolio fairly well. For the 10 C/P decile

portfolios, the model performs even more robustly: eight portfolios have insignificant intercepts,

with only CP2 and CP3 showing t-values greater than 2.0. Compared to the 25 FF size-value

portfolios, these two test portfolios offer an opportunity to assess the FF three factors under

different test portfolios. Notably, the industry and CP-sorted portfolios are not formed using the

same firm characteristics that define the FF factors, thus reducing the likelihood of spurious

We follow the matrix convention in naming each portfolio in the matrix format in the table. For
example, P(1,1) stands for the portfolio in the first row and first column. That is, P (1,1) stands for the
size-value sorted portfolio being the smallest in size and lowest in B/M ratio. The FF five factor model
yields similar results (not reported here).



correlation between the test assets and the factors. This independence allows for a more credible

assessment of whether the FF factors truly capture systematic risk premia, rather than merely

reflecting mechanical overlaps in portfolio construction.

There appears to be a monotonic relation between cash flows relative to market price and

value/growth (HML) factor loadings as shown in Panel A of Table 2. Specifically, portfolio returns

sorted by on the cash flows per market price increase as value/growth factor loadings increase.

However, we do not find strong evidence of covariance between industry portfolio returns and

factor returns. This result seems reasonable given that industry portfolios aggregate heterogeneous

firms - varying in size, valuation, and performance thereby diluting their sensitivity to size and

value factors. For example, within a given industry, a small, weak-performing firm may exhibit

positive sensitivity to SMB and HML, while a large, strong-performing firm in the same industry

may display negative sensitivity to these factors. When these diverse exposures are aggregated

into an industry-level portfolio, the net loading on SMB and HMLmay be substantially attenuated.

As a result, the explanatory power of the three-factor model is weaker for industry portfolios than

for portfolios sorted directly on firm characteristics. This is reflected in the average R2 reported in

Panel B of Table. For the 30 industry portfolios, R2 value range widely from as low as 0.22 (e.g.,

Tobacco products or Coal products) to as high as 0.86 (Finance industry). However, the CP decile

and 25 FF size/value test assets exhibit uniformly higher explanatory power, with R2 values

ranging from 0.80 to 0.96.

We notice very high HML factor loadings for certain industries. For instance, the Finance

industry shows an HML loading of 0.60 with a t-value of 18.51, implying its high sensitivity to

financial distress, which is proxied by the value factor. Similarly, the Oil and Textiles industries

show high positive HML loadings - 0.72 (t = 9.80) and 0.86 (t = 10.18), respectively. Meanwhile,



two industries - Services and Business Equipment - show significantly negative HML factor

loadings (-0.55 and -0.52, with t-values of -14.60 and -9.29, respectively). These negative

exposures imply that firms in these industries are more closely associated with strong growth

prospects.

Table 3 reports the results of the GRS test for portfolio efficiency under on the FF three-

factor model, using the 25 size/value portfolios over the period from 1986 to 2022. We reject the

portfolio efficiency, with a GRS statistic of 4.327 (p value = 0.000) and consistently large absolute

intercepts (in Panel A). The average intercept estimate is 0.117

inability to fully explain the cross-section of returns during this period. Panel B of Table 3 presents

GRS test results for seven non-overlapping sub-periods. As expected, portfolio efficiency changes

over time. While the multifactor efficiency is rejected in the first two sub-periods (p-values of

0.002 and 0.006), it is not rejected for the remaining five periods. Notably, the most recent two

sub-periods (2011-2014 and 2016-2020) yield the smallest GRS statistics of 1.110 and 0.962,

respectively with corresponding p values of 0.386 and 0.534. These periods also coincide with the

smallest average absolute intercept estimates, suggesting that the FF three-factor model performs

relatively better in explaining returns during more recent years.

In addition to the 25 FF portfolios as test assets, we use ten decile portfolios sorted by cash

flow/price (C/P) as test assets. Interestingly, the results differ markedly from those obtained using

the FF 25 portfolios. As shown in Panel A of Table 4, the GRS statistic is very small (1.333 with

p = 0.210) over the full sample period (1986 2022, or 444 monthly observations), indicating that

we cannot reject the efficiency of the FF three-factor model. The average absolute value of the

regression intercepts is also small, at just 0.075. These findings are consistent with those of Fama



and French (1996), who failed to reject portfolio efficiency for earlier sample periods. Overall, the

FF three-factor model appears to explain the average returns of the C/P decile portfolios quite well.

Panel B of Table 4 presents the result for seven sub-periods. In each case, the GRS statistic

remains insignificant, with the smallest value (0.544) observed in the 2001 2005 period. The

only exception is the 2011 to 2015 sub-period, during which the GRS statistic rises to 2.30 with a

p-value of 0.027, indicating a rejection of portfolio efficiency at conventional significant levels.

Table 5 shows another portfolio efficiency result using the 30 FF industry portfolios as test assets

for seven sub-periods. In this case, the FF three-factor portfolio efficiency is rejected in two sub-

periods (1996 to 2000 and 2016 to 2020) with corresponding p-values of 0.001 and 0.004,

respectively. Overall, these findings highlight the sensitivity of efficiency test outcomes to the

underlying test asset selection and test periods. A more thorough investigation is warranted to

resolve these discrepancies, but it is beyond the scope of this paper.

4.2. Multifactor Portfolio Efficiency with alternative factors

Fama and French (1996) demonstrate that their three-factor portfolios can be derived as a linear

combinations of component portfolios specifically, the market portfolio (M), high BM portfolio

(H), low BM portfolio (L), and small-cap portfolio (M). They argue that each of these component

portfolios can be viewed as a multifactor minimum variance (MMV) portfolio. Their mean-

variance spanning test shows that excess returns on any three of M, S, H, and L almost completely

explain the excess returns on the remaining component portfolios. We confirm their results using

updated data from 1986 to 2022. As shown in Table 6, any one of the L, H, S, and M factors is

nearly fully explained by the other three, with insignificant intercepts and very high R-squared

values. This suggests that the original FF three-factor model is not unique in capturing systematic



risks; rather, any three MMV component factors can substitute for the original factors. Table 7

shows the results of using alternative three-factor combinations such as MHL, MSL, and MSH

to evaluate portfolio efficiency using the 25 FF size-value portfolios as test assets. Consistent

with FF (1996), we find strong rejection of portfolio efficiency across all combinations. The GRS

test statistics are consistently around 4.4 for the whole sample period from 1986 to 2022, nearly

identical to the statistic obtained when using the original FF factors (see Table 7). This indicates

that the FF three factors may not be unique in mimicking underlying state variables. Any triplet of

M, S, H, and L as factors performs similarly, consistent with the results shown in Fama and French

(2016).

Even the four-factor model (with S, B, H, and L) produces a GRS statistic comparable to

the three-factor model, with the smallest average intercept (0.109) and the highest R2 (0.927) across

the 25 FF test portfolios. However, its performance deteriorates when applied to the 10 CP test

asset returns. As shown in Panel B of Table 7, the four-factor model yields a relatively high GRS

statistic with a marginally significant p-value of 0.063, indicating a portfolio efficiency rejection

at the 10% level. In this case, we include B and exclude M, using S, H, L, and B as the four

component MMV factors. This framework allows us to examine the implications of the structural

restrictions embedded in the SMB and HML factors in the traditional Fama-French three-factor

model. on HML defined as H minus L implicitly

imposes equal and opposite loadings on the high and low book-to-market portfolios.

Table 8 shows the estimated factor loadings on these component MMV factors such as M,

S, H, and L (and B in a later section) for the CP decile test portfolios. As shown in Table 7, these

component factors and the FF three factors produce similar GRS statistics and R2 in most cases.

However, we observe quite distinct patterns in the behavior of market and book-to-market (BM)



risk exposures across the alternative factor specifications. In Panel A of Table 8, we find a clear

monotonic decline in market beta as the cash flow-to-price ratio increases, while the loading on

the H (high B/M) factor rises. This suggests that firms with higher cash flow-to-price ratios

typically associated with weaker performance exhibit lower market risk and higher exposure to

value-related risk. In contrast, Panel B, which uses M, S, and L as factors, reveals that high-C/P

portfolios are associated with increasingly negative loadings on the L (low B/M) factor.

A particularly noteworthy finding is the contrasting behavior of market betas across these

specifications. With the M, S, H factor set (Panel A), there is a negative relationship between the

C/P ratio and market beta, while with the M, S, L set (Panel B), the relationship turns positive.

This stands in contrast to the results from the standard three-factor model (M, SMB, HML), shown

in Table 2, where market betas remain relatively stable hovering around one across the full

spectrum of C/P portfolios.

These findings highlight the additional interpretive flexibility afforded by decomposing the

SMB and HML factors into their underlying MMV components. Although the models perform

similarly in terms of overall fit (as indicated by GRS and R² values), the factor loadings reveal

economically meaningful variations in how different types of risk are priced across portfolios. In

particular, the results in Panel B are consistent with the view that portfolios with high cash flow-

to-price ratios often associated with value traps or distressed firms should exhibit elevated

market risk, as reflected in their higher betas under the M, S, L specification.

Panels C and D of Table 8 report the estimated factor loadings on H and L in alternative

component-factor models, which do not impose the stringent constraints in HML. In Panel C,

where the market factor is included alongside H and L, we observe that the factor loadings on H

and L generally have opposite signs, except for CP2 and CP3, which is partly consistent with the



implied restraint on the HML factor. In contrast, as shown in Panel D, where the market factor is

substituted by S and B instead, the factor loadings on H and L are quite different from each other,

often exhibiting the same sign across most CP decile portfolios. This behavior contrasts with the

typical expectation under the HML construction, where H and L are assumed to have equal and

opposite effects. Similarly, the factor loadings on S and B also tend to share the same sign,

indicating that these two size-related factors may be capturing overlapping risk dimensions in this

context.

Furthermore, we observe that the H factor loading is strongly associated with average CP

decile returns: as the loading on H increases, so do portfolio returns. This pattern aligns with the

earlier findings on HML in Table 2 and reinforces the interpretation that both H and HML

effectively capture distress-related risks. Overall, the results in Table 8 suggest that while both

the original Fama-French three-factor model and alternative models based on component MMV

factors explain CP decile portfolio returns well, the underlying mechanisms differ depending on

the factor specification. These differences highlight that multiple paths to achieving portfolio

efficiency exist, and they are sensitive to the choice of component portfolios used to construct the

factor model.11 We discuss the implications of these findings with component factor models for

mutual fund performance evaluation in Section 5.

4.2. The Behavior of Portfolio efficiency around financial crises

11 We also estimated three-factor models using the component factor portfolios for the 25 FF size/value
sorted portfolios. We obtained similar results that the market betas are close to one for all 25 portfolios,
while the market betas estimated with the component factors appear more random. They range from -1.95
to 1.44 for the MHL factors, while they range from -0.50 to 1.46 for MSH factors.



Finally, we present portfolio efficiency statistics over the extended period from 1980 to 2022

to examine the behavior of portfolio efficiency around major financial crises relative to more stable

periods. Earlier, as shown in Tables 3 through 5, GRS F-statistics varied over time across the five-

year sub-periods from 1986 to 2022 and are highly sensitive to the choice of test portfolios. In this

section, we extend the analysis to rolling five-year periods beginning in 1980, with a particular

focus on how GRS test results behave around major economic crises. As we discussed before, the

efficient frontier can shift substantially during financial crises, reflecting changes in the return-risk

relationship. Muir (2017) finds that risk premia such as dividend yields and credit spreads tend to

rise significantly during financial downturns, driven by increased uncertainty and compensation

for bearing risk.

Figure 1 illustrates conspicuously high GRS statistics around the years 1991, 2000, 2008,

and 2020 when using the 30 FF industry portfolios as test assets in conjunction with the FF three-

factor model.12 These elevated GRS values suggest that the three FF factors struggle to explain

average returns during financial crises, indicating portfolio inefficiency. Such inefficiency may be

shifting expectations and heightened uncertainty about future economic

conditions during turbulent times. Table 9 provides further details. Panel A of Table 9 reports GRS

statistics exceeding 2.5 in the years 1998, 1999, 2000, and 2020 each aligned with periods of

financial distress. These results suggest that the GRS test is effective in flagging episodes when

the FF factor model fails to adequately explain returns.

Panel B of Table 9 presents analogous results using the 25 FF size-value portfolios as test

assets. Interestingly, the GRS statistics derived from industry portfolios appear to be more

We also can match three major financial crises - the Asian Crisis (1998), the Dot-Com Bubble (2000),
the Global Finance crisis (2008), and the COVID crisis (2020) - with highest GRS statistics when the 30
industry portfolios as test assets are employed with a single market factor.



responsive in identifying financial crises than those from the size/value portfolios. One possible

explanation is that industry portfolios better capture sector-level economic dynamics, which are

directly influenced by macroeconomic shocks and investor behavior. This finding is consistent

with Liew and Vassalou (2000), who show that the SMB and HML factors possess predictive

power for future economic growth. In sum, our results underscore the importance of selecting

appropriate test assets and accounting for time variation when evaluating the portfolio efficiency

of factor models, particularly during periods of economic stress.

5. Implications for mutual fund performance evaluation

We discuss the implications of our empirical findings for mutual fund performance evaluation

through the lens of portfolio efficiency, which can be interpreted by the concept of potential

performance introduced by Jobson and Korkie (1989). Potential performance refers to the best

achievable return-to-risk tradeoff within a given set of assets or portfolios. A mutual fund manager

demonstrates abnormal performance only if they surpass this potential. Our results highlight the

sensitivity of portfolio efficiency to the choice of factor models, underscoring the importance of

selecting an appropriate benchmark. For instance, as shown in Table 1, the FF three-factor model

effectively explains the average returns of the 25 FF size-value portfolios. Specifically, 76% (19

out of 25) of the test portfolios yield insignificant alpha estimates, supporting the model as

a benchmark for funds with exposures driven by firm characteristics such as size and book-to-

market ratios.

However, six portfolios - P(1,1), P(2,1), P(5,1), P(1,4), P(1,5), and P(5,4) - exhibit

statistically significant intercepts (refer to Table 10). These alphas are likely due to pricing biases

rather than managerial skill. Accordingly, performance evaluations based on these portfolios



should be adjusted to avoid misattributing spurious abnormal returns. In particular, P (5,1) - the

largest size and lowest BM portfolio - displays a strong positive alpha of 0.17% per month (Panel

A), aligning with Cremers et al. (2012) who find similar positive performance in S&P500.

Conversely, P(1,1) - the smallest portfolio among 25 FF portfolios shows a large negative alpha

of -0.62% per month, reinforcing concerns about pricing biases at the extremes of the size-value

spectrum. We also observe persistent abnormal returns in CP2 and CP3 portfolios, as shown in

Table 8, regardless of whether standard FF factors or their underlying components are employed.

These findings call for caution when evaluating mutual funds with exposures similar to these six

FF portfolios and the CP2 and CP3 portfolios.

Interestingly, the component MSH factor model (Panel B) identifies the exact same six

portfolios for their significant alphas as the original FF three-factor model. MSL and MHL factors

also identify the exact five portfolios for their significant alphas. For these two component factor

models, we observe the significant alphas for P (4,1) instead of P (2,1). This observation suggests

that the source of pricing bias may not be solely due to the construction of SMB or HML, as argued

by Cremers et al. (2012), but could stem from other misspecifications. Furthermore, we show in

Tables 3, 4, 5, and 9 that portfolio efficiency is time-varying. Given that intercept estimates - and

thus the evidence of abnormal performance - can vary significantly over time, it is essential to

evaluate portfolio efficiency prior to adopting any factor model as a benchmark. A time-sensitive

approach ensures that the selected factor model offers a valid and unbiased standard for assessing

mutual fund performance during the specific evaluation period.

6. Conclusion and Future Research



We explore the multifactor efficiency of the FF three-factor model, employing various test assets

and alternative factor constructions. Our analysis highlights the complexity of evaluating portfolio

efficiency, driven by two primary sources of portfolio inefficiency in factor models. First, we find

that the outcomes of efficiency tests are highly sensitive to the choice of test assets. We employ

three distinct sets: the 25 FF size/value-sorted portfolios, the cash flow-to-price (C/P) decile

portfolios, and the 30 FF industry portfolios. Each set reflects different economic constructs - firm

characteristics, fundamental valuation, and sectoral composition, respectively. This variation

highlights the importance of aligning the nature of the test assets with the specific evaluation

context.

Second, we observe that efficiency test results are largely consistent across different factor

constructions, including those using component portfolios rather than the aggregated SMB and

HML factors. This suggests that the Fama-French factor portfolios may not be unique

representations of the underlying state variables. The persistence of significant pricing errors in

the almost same portfolios even under the component factor models offer two major future research

opportunities. One suggestion is that such biases documented in the literature may not stem solely

from the mismeasurement of SMB or HML, but from broader model misspecification. The other

is that the original FF factors, MKT, SMB and HML still remain effective in explaining test

portfolios returns.

These insights have important implications for mutual fund performance evaluation.

Specifically, analysts should (1) carefully select appropriate test assets that reflect the investment

style of the fund, (2) examine the robustness of the factor specification, and (3) adjust for pricing

errors to avoid attributing spurious alpha to managerial skill. This is particularly critical for funds



whose exposures resemble test portfolios known to produce significant intercepts, such as P (1,1),

P (5,1), or CP2 and CP3.

Moreover, our rolling-window time-series analysis reveals that portfolio efficiency is not

static but varies across market regimes. We identify substantial inefficiencies during major

financial crises - such as the Dot-com bubble (2000), the Global Financial Crisis (2008), and the

COVID-19 pandemic (2020) - particularly when industry portfolios are used as test assets. This

pattern likely reflects shifts in risk premia, investor sentiment, and macroeconomic uncertainty, all

of which distort the risk-return tradeoff.

Together, these findings reinforce the importance of a dynamic and context-sensitive

approach to evaluating portfolio efficiency. Rigid application of standard factor models without

regard for test asset alignment, factor robustness, and temporal variation may yield misleading

conclusions in both academic research and practical performance evaluation.
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Table 1: Regressions coefficients of excess 25 FF stock portfolio returns on monthly excess
market returns (Rm Rf) and the size (SMB) and book-to-market equity (HML) factors for the
period from 1986 to 2022. SMB is the difference between the average of the returns on the
small-stock portfolios and the average of the returns on the big-stock portfolios. HML is the
difference between the average of the returns on the high-BE/ME portfolios and the average of
the returns on the low-BE/ME portfolios. BE/ME is the book-to-market equity ratio. Coefficient
estimates, their t-stats, R2, and residual standard errors are reported. We estimate the regression
coefficients from the following three-factor model.

R Rf = a + b(Rm Rf) +sSMB + hHML + e

Book-to-Market quintiles
______________________________________________________________________

Low 2 3 4 High Low 2 3 4 High
______________________________________________________________________

a t(a)

Small -0.62 0.07 0.00 0.23 0.25 -4.79 0.67 -0.05 3.37 2.27
2 -0.17 0.07 0.05 0.04 -0.02 -2.03 1.02 0.73 0.62 -0.28
3 -0.09 0.12 -0.01 0.06 0.05 -1.10 1.49 -0.16 0.83 0.47
4 0.15 0.07 -0.03 0.02 -0.06 1.95 0.87 -0.34 0.27 -0.61
Big 0.17 0.07 0.05 -0.27 -0.19 3.68 0.96 0.61 -3.47 -1.50

b t(b)
Small 1.11 0.96 0.91 0.88 0.93 38.65 42.71 61.97 57.93 38.22
2 1.13 1.01 0.96 0.93 1.09 59.08 63.78 58.59 66.85 73.23
3 1.10 1.02 0.97 1.00 1.09 62.61 57.87 54.56 57.61 50.88
4 1.07 1.04 1.03 1.01 1.11 62.88 58.70 52.82 51.83 48.75
Big 0.99 0.95 0.93 1.03 1.17 95.49 61.37 53.84 58.42 40.42

s t(s)
Small 1.38 1.33 1.04 1.06 1.06 31.88 39.19 46.93 46.50 28.98
2 1.03 0.91 0.71 0.75 0.93 35.83 38.22 28.69 35.49 41.34
3 0.76 0.57 0.39 0.43 0.52 28.87 21.44 14.53 16.37 16.09
4 0.45 0.21 0.14 0.20 0.26 17.46 8.03 4.93 6.82 7.50
Big -0.26 -0.20 -0.19 -0.21 -0.20 -16.62 -8.41 -7.20 -7.98 -4.48

h t(h)
Small -0.26 -0.01 0.28 0.50 0.72 -6.26 -0.41 13.36 22.77 20.36
2 -0.30 0.14 0.42 0.60 0.84 -10.90 6.02 17.69 29.69 38.77
3 -0.38 0.17 0.44 0.65 0.86 -14.84 6.54 17.04 25.64 27.83
4 -0.36 0.25 0.45 0.56 0.84 -14.69 9.68 16.07 19.67 25.51
Big -0.33 0.10 0.33 0.71 0.86 -21.88 4.30 13.41 27.76 20.50

R2 s(e)
Small 0.89 0.91 0.94 0.94 0.87 2.68 1.78 1.63 1.58 0.96
2 0.94 0.94 0.92 0.94 0.95 2.10 1.47 1.65 1.65 1.45
3 0.94 0.91 0.89 0.91 0.89 1.37 1.53 1.65 1.82 1.61
4 0.93 0.90 0.88 0.88 0.87 1.41 1.30 1.62 1.82 1.64
Big 0.96 0.90 0.87 0.90 0.81 2.26 1.39 1.99 2.13 2.69



Table 2: Regression estimation of the FF three-factor model with alternative test portfolios - FF
10 cashflow/price (CP) decile portfolios and 30 FF industry portfolios for the period from 1986
to 2022.

Panel A: Regression coefficient estimates with their t-values and R2 for 10 FF CP portfolios

_______________________________________________________________
a b s h t(a) t(b) t(s) t(h) R2

_______________________________________________________________
CP1 0.06 1.12 0.00 -0.41 0.79 62.53 0.01 -15.85 0.92
CP2 0.15 0.97 -0.13 -0.12 2.12 62.17 -5.59 -5.16 0.90
CP3 0.18 0.96 -0.21 -0.02 2.43 57.66 -8.52 -0.69 0.89
CP4 0.04 0.96 -0.14 0.17 0.55 55.40 -5.42 6.88 0.88
CP5 -0.03 0.96 -0.08 0.22 -0.42 53.27 -2.91 8.57 0.87
CP6 -0.02 0.95 -0.10 0.37 -0.30 54.40 -3.92 14.81 0.87
CP7 0.13 0.86 -0.01 0.39 1.22 37.67 -0.15 11.67 0.77
CP8 0.06 0.95 -0.08 0.47 0.77 52.08 -2.97 17.72 0.87
CP9 -0.02 0.95 0.00 0.50 -0.23 46.46 0.02 17.00 0.84
CP10 -0.05 1.08 0.16 0.58 -0.38 39.87 3.84 14.92 0.80
_______________________________________________________________



Panel B: Regression coefficient estimates with their t-values and R2 for 30 FF industry portfolios

_______________________________________________________________
a b s h t(a) t(b) t(s) t(h) R2

_______________________________________________________________
Food 0.30 0.67 -0.31 0.15 2.02 20.59 -6.33 3.10 0.50
Beer 0.50 0.68 -0.40 -0.03 2.69 16.29 -6.29 -0.47 0.39
Smoke 0.61 0.69 -0.35 0.27 2.12 10.83 -3.59 2.97 0.22
Games -0.04 1.25 0.30 0.11 -0.23 28.87 4.58 1.81 0.69
Books -0.44 1.10 0.19 0.43 -2.82 31.87 3.60 8.50 0.72
Hshld 0.19 0.72 -0.22 0.04 1.28 21.76 -4.43 0.90 0.52
Clths 0.01 1.11 0.08 0.22 0.06 23.70 1.18 3.22 0.58
Hlth 0.36 0.77 -0.21 -0.19 2.52 24.07 -4.44 -4.21 0.59
Chem -0.07 1.11 -0.02 0.39 -0.43 32.74 -0.43 7.97 0.72
Txtls -0.39 1.20 0.62 0.86 -1.48 20.53 7.06 10.18 0.57
Cntr -0.14 1.19 0.23 0.47 -0.91 34.67 4.52 9.38 0.75
Steel -0.42 1.43 0.53 0.42 -1.72 26.13 6.48 5.35 0.65
FabPr -0.03 1.22 0.39 0.28 -0.18 35.41 7.54 5.62 0.77
ElcEq 0.03 1.27 0.03 0.05 0.19 35.81 0.54 1.02 0.76
Autos -0.27 1.40 0.21 0.41 -0.96 22.38 2.21 4.51 0.55
Carry 0.01 1.10 0.01 0.51 0.05 25.72 0.10 8.23 0.62
Mines -0.06 0.88 0.32 0.40 -0.20 12.08 2.92 3.78 0.29
Coal -0.01 1.08 0.59 0.62 -0.02 9.41 3.43 3.74 0.21
Oil 0.02 0.92 0.08 0.72 0.11 18.08 1.06 9.80 0.48
Util 0.24 0.50 -0.25 0.27 1.51 14.18 -4.73 5.29 0.34
Telcm -0.10 0.93 -0.19 0.04 -0.72 28.57 -3.85 0.77 0.65
Servs 0.20 1.14 0.12 -0.55 1.71 43.71 2.95 -14.60 0.85
BusEq 0.09 1.24 0.29 -0.52 0.55 32.29 5.07 -9.29 0.76
Paper -0.12 0.95 -0.05 0.32 -0.82 30.13 -1.03 6.92 0.68
Trans -0.07 1.01 0.06 0.35 -0.48 29.87 1.17 7.14 0.68
Whlsl -0.06 0.93 0.26 0.26 -0.53 35.80 6.67 6.79 0.77
Rtail 0.20 0.97 -0.05 -0.10 1.32 29.20 -1.09 -2.12 0.68
Meals 0.18 0.89 -0.06 0.19 1.12 25.01 -1.20 3.68 0.59
Fin -0.16 1.14 -0.11 0.60 -1.55 51.04 -3.27 18.51 0.86
Other -0.35 1.02 -0.04 0.27 -2.24 28.98 -0.71 5.22 0.66
________________________________________________________________



Table 3: Portfolio efficiency with 25 FF size/value portfolios for all observations from 1986 t0
2022, given the FF 3-factor model. GRS is the F-statistic of Gibbons, Ross, and Shanken (1989),
testing the hypothesis that the regression intercepts for test assets are all zero. p(GRS) is the p-
value of GRS. Avg |a| is the average of the absolute value of the intercepts.

Panel A: All 444 monthly observations for the period from 1986 to 2022

______________________________________________
GRS p(GRS) Avg |a| R2

1986-2022 4.327 0.000 0.117 0.907
______________________________________________

Panel B: 5-year sub-periods of 60 monthly return observations
_________________________________________________
Periods GRS p(GRS) Avg |a| R2

_________________________________________________
1986 - 1990 2.913 0.002 0.205 0.962
1991 - 1995 2.597 0.006 0.178 0.884
1996 - 2000 1.364 0.202 0.355 0.889
2001 - 2005 1.499 0.139 0.204 0.894
2006 - 2010 1.478 0.148 0.222 0.950
2011 - 2015 1.110 0.386 0.140 0.930
2016 - 2020 0.962 0.534 0.143 0.944
________________________________________________



Table 4: Portfolio efficiency with 10 FF CP portfolios for all observations from 1986 to 2022,
given the FF three-factor model.

Panel A: All 444 monthly observations for the period from 1986 to 2022
_______________________________________________

GRS p(GRS) Avg |a| R2

_______________________________________________
1986 - 2022 1.333 0.210 0.075 0.861
_______________________________________________

Panel B: 5-year subperiods of 60 monthly return observations
____________________________________________________
Periods GRS p(GRS) Avg |a| R2

____________________________________________________
1986 - 1990 1.146 0.350 0.129 0.956
1991 - 1995 0.885 0.554 0.097 0.864
1996 - 2000 1.125 0.365 0.252 0.806
2001 - 2005 0.544 0.849 0.113 0.829
2006 - 2010 1.154 0.345 0.203 0.904
2011 - 2015 2.300 0.027 0.140 0.887
2016 - 2020 1.305 0.256 0.252 0.915
____________________________________________________



Table 5: Portfolio efficiency with 30 FF industry portfolios for all observations from 1986 to
2022, given the FF three-factor model. Refer to Table 3 for the definitions of the variables ans
statistics.

Panel A: All 444 monthly observations for the period from 1986 to 2022
_____________________________________________

GRS p(GRS) Avg |a| R2

__________________________________________

1986 - 2022 1.718 0.012 0.189 0.603

_____________________________________________

Panel B: 5-year sub-periods of 60 monthly return observations
_________________________________________________

Periods GRS p(GRS) Avg |a| R2

_________________________________________________
1986 - 1990 1.589 0.114 0.436 0.796
1991 - 1995 0.888 0.626 0.365 0.572
1996 - 2000 3.586 0.001 0.738 0.519
2001 - 2005 0.601 0.912 0.344 0.567
2006 - 2010 1.123 0.382 0.439 0.736
2011 - 2015 1.374 0.204 0.651 0.662
2016 - 2020 2.838 0.004 0.386 0.693
__________________________________________________



Table 6: Regression results of the component factors against the remaining component factors
using the sample period of 1986 - 2022. L, H, S, B, and M indicate the excess returns of the low
book-to-market portfolio, high book-to-market portfolio, small portfolio, big portfolio, and
market portfolio, respectively. The numbers in the parentheses are t-values below the estimated
regression coefficients.

_________________________________________________________________________________

R2

_________________________________________________________________________________

L = -0.06 0.84 M 0.75 S -0.53 H 0.99
(-1.83) (56.43) (53.24) (-35.31)

H = -0.04 1.26 M 1.2 S -1.38 L 0.96
(-0.87) (37.23) (49.03) (-35.31)

S = 0.05 -0.91 M 0.71 H 1.15 L 0.98
(1.38) (-30.21) (49.03) (53.24)

M = 0.07 -0.74 S 0.61 H 1.05 L 0.98
(2.02) (-30.21) (37.23) (56.43)

M = 0.03 -0.02 S 0.77 B -0.18 H 0.39 L 0.99
(1.11) (-0.56) (22.8) (-4.93) (12.57)

___________________________________________________________________________________



Table 7: GRS F-tests with original and component factors: (M, SMB, HML), (M, S, H), (M, S,
L), (M, H, L), and (S, B, H, L) for 1986 2022. Refer to Table 3 for the definitions of factors.
P(GRS) is the p-value of GRS.

________________________________________________________
Panel A: GRS tests with 25 size/value portfolios as test portfolios
_________________________________________________________

Factors GRS p(GRS) Avg |a| R2

_________________________________________________________
25 Size/Value M SMB HML 4.327 0.0 0.117 0.907
25 Size/Value M S H 4.430 0.0 0.126 0.907
25 Size/Value M S L 4.396 0.0 0.111 0.904
25 Size/Value M H L 4.432 0.0 0.131 0.900
25 Size/Value S B H L 4.211 0.0 0.109 0.927

Panel B: GRS F-tests with 10 CP portfolios as test assets
_________________________________________________________

Factors GRS p(GRS) Avg |a| R2

_________________________________________________________
10 C/P M SMB HML 1.333 0.210 0.075 0.861
10 C/P M S H 1.215 0.279 0.069 0.856
10 C/P M S L 1.502 0.136 0.082 0.857
10 C/P M H L 1.201 0.288 0.073 0.859
10 C/P S B H L 1.775 0.063 0.080 0.880
_________________________________________________________



Table 8: Regression results of FF 10 CP test portfolios against the component factors of the
three-factor model for the period 1986 - 2022.

Panel A: The components factors are M, S, and H.

________________________________________________________________

a b s h t(a) t(b) t(s) t(h) R2

________________________________________________________________
CP1 0.04 1.45 0.29 -0.59 0.43 35.32 7.30 -14.21 0.91
CP2 0.14 1.15 -0.07 -0.10 1.99 32.64 -2.07 -2.82 0.90
CP3 0.18 1.10 -0.24 0.10 2.36 29.32 -6.81 2.54 0.88
CP4 0.05 0.89 -0.28 0.33 0.68 22.83 -7.49 8.42 0.87
CP5 -0.02 0.81 -0.22 0.36 -0.22 19.82 -5.79 8.76 0.86
CP6 0.00 0.69 -0.38 0.62 -0.01 17.43 -10.17 15.37 0.87
CP7 0.15 0.50 -0.23 0.57 1.45 9.69 -4.69 10.80 0.77
CP8 0.09 0.59 -0.42 0.75 1.08 14.14 -10.65 17.92 0.86
CP9 0.01 0.48 -0.34 0.77 0.08 10.64 -7.77 16.56 0.84
CP10 -0.01 0.45 -0.20 0.79 -0.08 7.42 -3.38 12.67 0.80
__________________________________________________________________

Panel B: The component factors are M, S, and L.
__________________________________________________________________

a b s l t(a) t(b) t(s) t(l) R2
__________________________________________________________________
CP1 0.09 0.55 -0.53 1.07 1.17 10.02 -13.51 16.88 0.92
CP2 0.16 0.96 -0.23 0.23 2.22 19.62 -6.44 4.02 0.90
CP3 0.19 1.18 -0.16 -0.06 2.41 22.03 -4.17 -0.91 0.88
CP4 0.04 1.33 0.14 -0.50 0.44 24.00 3.44 -7.73 0.87
CP5 -0.05 1.34 0.26 -0.62 -0.60 23.66 6.40 -9.46 0.87
CP6 -0.04 1.54 0.41 -0.97 -0.51 27.36 10.03 -14.87 0.87
CP7 0.10 1.33 0.53 -0.97 1.01 18.68 10.26 -11.73 0.78
CP8 0.04 1.62 0.54 -1.17 0.49 27.06 12.49 -16.90 0.85
CP9 -0.04 1.52 0.63 -1.18 -0.41 23.07 13.23 -15.35 0.83
CP10 -0.07 1.60 0.86 -1.34 -0.62 19.12 14.09 -13.77 0.81
__________________________________________________________________



Panel C: The component factors are M, H, and L.
________________________________________________________________

a b h l t(a) t(b) t(h) t(l) R2
________________________________________________________________
CP1 0.07 1.05 -0.39 0.45 0.83 16.21 -12.64 9.83 0.92
CP2 0.14 1.15 -0.15 -0.03 2.00 20.02 -5.38 -0.80 0.90
CP3 0.17 1.28 -0.07 -0.24 2.22 20.37 -2.46 -5.32 0.88
CP4 0.04 1.16 0.14 -0.34 0.47 18.21 4.50 -7.37 0.87
CP5 -0.04 1.08 0.20 -0.32 -0.46 16.46 6.45 -6.78 0.87
CP6 -0.03 1.10 0.35 -0.50 -0.35 17.35 11.36 -10.93 0.87
CP7 0.13 0.82 0.40 -0.36 1.24 9.87 10.11 -6.06 0.77
CP8 0.06 1.04 0.46 -0.55 0.74 15.64 14.33 -11.45 0.87
CP9 -0.02 0.86 0.53 -0.45 -0.19 11.64 14.97 -8.43 0.84
CP10 -0.04 0.78 0.65 -0.36 -0.30 7.96 13.72 -5.05 0.80
________________________________________________________________

Panel D: The component factors are S, B, H, and L.
____________________________________________________________________________

a s b h l t(a) t(s) t(b) t(h) t(l) R2
____________________________________________________________________________
CP1 0.12 -0.70 0.23 0.08 1.44 1.48 -5.50 1.91 0.59 12.94 0.91
CP2 0.16 0.03 1.06 -0.47 0.34 2.34 0.27 10.50 -4.41 3.67 0.91
CP3 0.18 0.08 1.27 -0.51 0.12 2.63 0.75 12.17 -4.61 1.25 0.90
CP4 0.03 0.50 1.52 -0.67 -0.37 0.44 4.49 14.42 -5.98 -3.80 0.90
CP5 -0.06 0.85 1.72 -0.91 -0.67 -0.79 7.51 16.11 -7.97 -6.78 0.90
CP6 -0.03 0.53 1.46 -0.46 -0.57 -0.46 4.64 13.46 -3.97 -5.68 0.89
CP7 0.08 1.27 1.90 -1.07 -1.17 0.91 8.97 14.18 -7.54 -9.47 0.83
CP8 0.05 0.63 1.52 -0.44 -0.73 0.64 5.34 13.62 -3.71 -7.09 0.89
CP9 -0.03 0.62 1.35 -0.31 -0.68 -0.38 4.61 10.59 -2.33 -5.83 0.86
CP10 -0.06 0.92 1.42 -0.41 -0.85 -0.46 4.94 8.03 -2.15 -5.18 0.81
_____________________________________________________________________________



Table 9: Changes in portfolio efficiency during 1980 2022. We provide information on
portfolio efficiency using five-year monthly observations to produce GRS statistics, absolute
mean values of the intercept estimates, and R squared for each five-year rolling window. FF
three-factor model is used here.

Panel A: GRS test results for 25 FF size/value portfolios

start end GRS p(GRS) Avg|a| R2

___________________________________________________________________________________________

Period 1 1980 1984 1.261 0.265 0.202 0.926
Period 2 1981 1985 2.069 0.027 0.295 0.924
Period 3 1982 1986 2.151 0.021 0.251 0.933
Period 4 1983 1987 1.585 0.109 0.202 0.955
Period 5 1984 1988 2.856 0.003 0.218 0.959
Period 6 1985 1989 2.163 0.020 0.179 0.960
Period 7 1986 1990 3.026 0.002 0.205 0.962
Period 8 1987 1991 2.377 0.011 0.176 0.957
Period 9 1988 1992 2.272 0.015 0.190 0.926
Period 10 1989 1993 1.768 0.064 0.162 0.922
Period 11 1990 1994 1.781 0.062 0.185 0.922
Period 12 1991 1995 2.447 0.009 0.179 0.885
Period 13 1992 1996 3.354 0.001 0.189 0.866
Period 14 1993 1997 2.520 0.007 0.212 0.882
Period 15 1994 1998 2.592 0.006 0.243 0.924
Period 16 1995 1999 1.814 0.056 0.332 0.906
Period 17 1996 2000 1.388 0.189 0.352 0.891
Period 18 1997 2001 1.395 0.186 0.301 0.876
Period 19 1998 2002 1.505 0.137 0.271 0.880
Period 20 1999 2003 1.978 0.035 0.334 0.873
Period 21 2000 2004 1.715 0.075 0.284 0.875
Period 22 2001 2005 1.476 0.149 0.210 0.895
Period 23 2002 2006 1.471 0.151 0.216 0.913
Period 24 2003 2007 1.687 0.081 0.136 0.909
Period 25 2004 2008 1.887 0.045 0.251 0.934
Period 26 2005 2009 1.223 0.292 0.224 0.947
Period 27 2006 2010 1.444 0.162 0.223 0.951
Period 28 2007 2011 1.901 0.044 0.240 0.953
Period 29 2008 2012 1.321 0.227 0.202 0.950
Period 30 2009 2013 2.021 0.031 0.196 0.947
Period 31 2010 2014 1.926 0.040 0.167 0.938
Period 32 2011 2015 1.110 0.386 0.140 0.930
Period 33 2012 2016 2.073 0.026 0.113 0.911
Period 34 2013 2017 2.386 0.011 0.133 0.913
Period 35 2014 2018 2.737 0.004 0.116 0.924
Period 36 2015 2019 1.393 0.187 0.120 0.929
Period 37 2016 2020 0.977 0.518 0.135 0.946
Period 38 2017 2021 1.386 0.190 0.155 0.930
Period 39 2018 2022 1.474 0.149 0.153 0.937
____________________________________________________________



Panel B: GRS test results with thirty FF industry portfolios as test portfolios

start end GRS p(GRS) Avg|a| R2

_________________________________________________________
Period 1 1980 1984 0.992 0.511 0.423 0.681
Period 2 1981 1985 1.268 0.268 0.694 0.681
Period 3 1982 1986 1.548 0.127 0.724 0.709
Period 4 1983 1987 0.795 0.730 0.351 0.782
Period 5 1984 1988 1.483 0.152 0.415 0.797
Period 6 1985 1989 1.208 0.312 0.426 0.785
Period 7 1986 1990 1.558 0.124 0.435 0.795
Period 8 1987 1991 2.207 0.020 0.340 0.782
Period 9 1988 1992 1.855 0.054 0.395 0.686
Period 10 1989 1993 1.443 0.169 0.292 0.676
Period 11 1990 1994 1.409 0.186 0.278 0.667
Period 12 1991 1995 0.877 0.638 0.358 0.573
Period 13 1992 1996 1.160 0.351 0.373 0.513
Period 14 1993 1997 1.955 0.041 0.440 0.546
Period 15 1994 1998 2.813 0.004 0.525 0.625
Period 16 1995 1999 2.947 0.003 0.720 0.567
Period 17 1996 2000 3.764 0.000 0.736 0.520
Period 18 1997 2001 2.029 0.033 0.694 0.517
Period 19 1998 2002 1.112 0.392 0.475 0.522
Period 20 1999 2003 0.660 0.865 0.476 0.504
Period 21 2000 2004 0.507 0.964 0.399 0.517
Period 22 2001 2005 0.601 0.912 0.341 0.567
Period 23 2002 2006 0.887 0.626 0.286 0.562
Period 24 2003 2007 0.774 0.753 0.465 0.520
Period 25 2004 2008 1.759 0.071 0.538 0.636
Period 26 2005 2009 1.526 0.135 0.484 0.701
Period 27 2006 2010 1.142 0.366 0.437 0.736
Period 28 2007 2011 1.636 0.100 0.439 0.759
Period 29 2008 2012 1.367 0.208 0.397 0.751
Period 30 2009 2013 1.274 0.264 0.493 0.728
Period 31 2010 2014 0.896 0.617 0.581 0.695
Period 32 2011 2015 1.377 0.202 0.652 0.662
Period 33 2012 2016 1.056 0.445 0.519 0.612
Period 34 2013 2017 0.910 0.602 0.427 0.593
Period 35 2014 2018 1.431 0.175 0.348 0.590
Period 36 2015 2019 1.777 0.068 0.366 0.616
Period 37 2016 2020 2.768 0.005 0.380 0.694
Period 38 2017 2021 1.661 0.093 0.322 0.688
Period 39 2018 2022 1.655 0.095 0.338 0.713
_____________________________________________________



Figure 1.

GRS stands for GRS multifactor efficiency test statistics.
intercept estimates. We employ as test assets 30 FF industry portfolios and 25 FF size/value
portfolios.



Table 10: The intercept estimates and their t - values of 25 size-value sorted portfolios for FF three factors
and alternative MMV component factors.

____________________________________________________________________
Low 2 3 4 High Low 2 3 4 High

____________________________________________________________________
a t(a)

Panel A: FF 3 factors M, SMB, and HML
____________________________________________________________________
Small -0.62 0.07 0.00 0.23 0.25 -4.79 0.67 -0.05 3.37 2.27
2 -0.17 0.07 0.05 0.04 -0.02 -2.03 1.02 0.73 0.62 -0.28
3 -0.09 0.12 -0.01 0.06 0.05 -1.10 1.49 -0.16 0.83 0.47
4 0.15 0.07 -0.03 0.02 -0.06 1.95 0.87 -0.34 0.27 -0.61
Big 0.17 0.07 0.05 -0.27 -0.19 3.68 0.96 0.61 -3.47 -1.50
____________________________________________________________________
Panel B: MSH factors
____________________________________________________________________
Small -0.65 0.06 0.01 0.25 0.28 -4.79 0.55 0.14 3.45 2.42
2 -0.20 0.08 0.08 0.07 0.02 -2.48 1.29 1.15 1.16 0.33
3 -0.12 0.13 0.02 0.10 0.09 -1.44 1.76 0.19 1.32 0.96
4 0.12 0.09 0.00 0.06 -0.02 1.56 1.10 0.00 0.63 -0.23
Big 0.15 0.08 0.07 -0.24 -0.17 3.01 1.06 0.89 -2.97 -1.44
_____________________________________________________________________
Panel C: MSL factors
_____________________________________________________________________
Small -0.54 0.11 0.01 0.23 0.24 -4.42 1.03 0.15 3.15 2.05
2 -0.11 0.09 0.04 0.02 -0.03 -1.71 1.46 0.65 0.37 -0.39
3 -0.03 0.12 -0.03 0.04 0.03 -0.48 1.61 -0.41 0.57 0.28
4 0.19 0.06 -0.05 0.01 -0.07 2.51 0.75 -0.63 0.07 -0.66
Big 0.19 0.05 0.02 -0.29 -0.18 4.30 0.74 0.22 -3.07 -1. 12
_____________________________________________________________________
Panel D: MHL factors
_____________________________________________________________________
Small -0.51 0.16 0.07 0.30 0.32 -4.13 1.41 0.85 3.29 2.51
2 -0.09 0.14 0.10 0.09 0.05 -1.44 1.87 1.25 1.17 0.59
3 -0.03 0.16 0.01 0.10 0.08 -0.39 1.94 0.18 1.21 0.90
4 0.18 0.08 -0.02 0.04 -0.04 2.49 1.06 -0.21 0.47 -0.38
Big 0.16 0.05 0.03 -0.28 -0.19 3.06 0.77 0.44 -3.38 -1.41
_____________________________________________________________________


